3.8.73 \(\int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^2} \, dx\) [773]

Optimal. Leaf size=199 \[ \frac {3 (i A-9 B) c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )}{4 \sqrt {2} a^2 f}-\frac {3 (i A-9 B) c^2 \sqrt {c-i c \tan (e+f x)}}{8 a^2 f}-\frac {(i A-9 B) c (c-i c \tan (e+f x))^{3/2}}{8 a^2 f (1+i \tan (e+f x))}+\frac {(i A-B) (c-i c \tan (e+f x))^{5/2}}{4 a^2 f (1+i \tan (e+f x))^2} \]

[Out]

3/8*(I*A-9*B)*c^(5/2)*arctanh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2))/a^2/f*2^(1/2)-3/8*(I*A-9*B)*c^2*(c
-I*c*tan(f*x+e))^(1/2)/a^2/f-1/8*(I*A-9*B)*c*(c-I*c*tan(f*x+e))^(3/2)/a^2/f/(1+I*tan(f*x+e))+1/4*(I*A-B)*(c-I*
c*tan(f*x+e))^(5/2)/a^2/f/(1+I*tan(f*x+e))^2

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {3669, 79, 43, 52, 65, 214} \begin {gather*} \frac {3 c^{5/2} (-9 B+i A) \tanh ^{-1}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )}{4 \sqrt {2} a^2 f}-\frac {3 c^2 (-9 B+i A) \sqrt {c-i c \tan (e+f x)}}{8 a^2 f}-\frac {c (-9 B+i A) (c-i c \tan (e+f x))^{3/2}}{8 a^2 f (1+i \tan (e+f x))}+\frac {(-B+i A) (c-i c \tan (e+f x))^{5/2}}{4 a^2 f (1+i \tan (e+f x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(5/2))/(a + I*a*Tan[e + f*x])^2,x]

[Out]

(3*(I*A - 9*B)*c^(5/2)*ArcTanh[Sqrt[c - I*c*Tan[e + f*x]]/(Sqrt[2]*Sqrt[c])])/(4*Sqrt[2]*a^2*f) - (3*(I*A - 9*
B)*c^2*Sqrt[c - I*c*Tan[e + f*x]])/(8*a^2*f) - ((I*A - 9*B)*c*(c - I*c*Tan[e + f*x])^(3/2))/(8*a^2*f*(1 + I*Ta
n[e + f*x])) + ((I*A - B)*(c - I*c*Tan[e + f*x])^(5/2))/(4*a^2*f*(1 + I*Tan[e + f*x])^2)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3669

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{(a+i a \tan (e+f x))^2} \, dx &=\frac {(a c) \text {Subst}\left (\int \frac {(A+B x) (c-i c x)^{3/2}}{(a+i a x)^3} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {(i A-B) (c-i c \tan (e+f x))^{5/2}}{4 a^2 f (1+i \tan (e+f x))^2}-\frac {((A+9 i B) c) \text {Subst}\left (\int \frac {(c-i c x)^{3/2}}{(a+i a x)^2} \, dx,x,\tan (e+f x)\right )}{8 f}\\ &=-\frac {(i A-9 B) c (c-i c \tan (e+f x))^{3/2}}{8 a^2 f (1+i \tan (e+f x))}+\frac {(i A-B) (c-i c \tan (e+f x))^{5/2}}{4 a^2 f (1+i \tan (e+f x))^2}+\frac {\left (3 (A+9 i B) c^2\right ) \text {Subst}\left (\int \frac {\sqrt {c-i c x}}{a+i a x} \, dx,x,\tan (e+f x)\right )}{16 a f}\\ &=-\frac {3 (i A-9 B) c^2 \sqrt {c-i c \tan (e+f x)}}{8 a^2 f}-\frac {(i A-9 B) c (c-i c \tan (e+f x))^{3/2}}{8 a^2 f (1+i \tan (e+f x))}+\frac {(i A-B) (c-i c \tan (e+f x))^{5/2}}{4 a^2 f (1+i \tan (e+f x))^2}+\frac {\left (3 (A+9 i B) c^3\right ) \text {Subst}\left (\int \frac {1}{(a+i a x) \sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{8 a f}\\ &=-\frac {3 (i A-9 B) c^2 \sqrt {c-i c \tan (e+f x)}}{8 a^2 f}-\frac {(i A-9 B) c (c-i c \tan (e+f x))^{3/2}}{8 a^2 f (1+i \tan (e+f x))}+\frac {(i A-B) (c-i c \tan (e+f x))^{5/2}}{4 a^2 f (1+i \tan (e+f x))^2}+\frac {\left (3 (i A-9 B) c^2\right ) \text {Subst}\left (\int \frac {1}{2 a-\frac {a x^2}{c}} \, dx,x,\sqrt {c-i c \tan (e+f x)}\right )}{4 a f}\\ &=\frac {3 (i A-9 B) c^{5/2} \tanh ^{-1}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )}{4 \sqrt {2} a^2 f}-\frac {3 (i A-9 B) c^2 \sqrt {c-i c \tan (e+f x)}}{8 a^2 f}-\frac {(i A-9 B) c (c-i c \tan (e+f x))^{3/2}}{8 a^2 f (1+i \tan (e+f x))}+\frac {(i A-B) (c-i c \tan (e+f x))^{5/2}}{4 a^2 f (1+i \tan (e+f x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 180.00, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[((A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(5/2))/(a + I*a*Tan[e + f*x])^2,x]

[Out]

$Aborted

________________________________________________________________________________________

Maple [A]
time = 0.35, size = 140, normalized size = 0.70

method result size
derivativedivides \(-\frac {2 i c^{2} \left (i B \sqrt {c -i c \tan \left (f x +e \right )}-c \left (\frac {4 \left (\frac {13 i B}{32}+\frac {5 A}{32}\right ) \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}+4 \left (-\frac {11}{16} i B c -\frac {3}{16} A c \right ) \sqrt {c -i c \tan \left (f x +e \right )}}{\left (c +i c \tan \left (f x +e \right )\right )^{2}}+\frac {3 \left (\frac {9 i B}{4}+\frac {A}{4}\right ) \sqrt {2}\, \arctanh \left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{4 \sqrt {c}}\right )\right )}{f \,a^{2}}\) \(140\)
default \(-\frac {2 i c^{2} \left (i B \sqrt {c -i c \tan \left (f x +e \right )}-c \left (\frac {4 \left (\frac {13 i B}{32}+\frac {5 A}{32}\right ) \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}+4 \left (-\frac {11}{16} i B c -\frac {3}{16} A c \right ) \sqrt {c -i c \tan \left (f x +e \right )}}{\left (c +i c \tan \left (f x +e \right )\right )^{2}}+\frac {3 \left (\frac {9 i B}{4}+\frac {A}{4}\right ) \sqrt {2}\, \arctanh \left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{4 \sqrt {c}}\right )\right )}{f \,a^{2}}\) \(140\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

-2*I/f/a^2*c^2*(I*B*(c-I*c*tan(f*x+e))^(1/2)-c*(4*((13/32*I*B+5/32*A)*(c-I*c*tan(f*x+e))^(3/2)+(-11/16*I*B*c-3
/16*A*c)*(c-I*c*tan(f*x+e))^(1/2))/(c+I*c*tan(f*x+e))^2+3/4*(9/4*I*B+1/4*A)*2^(1/2)/c^(1/2)*arctanh(1/2*(c-I*c
*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2))))

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 200, normalized size = 1.01 \begin {gather*} -\frac {i \, {\left (\frac {3 \, \sqrt {2} {\left (A + 9 i \, B\right )} c^{\frac {7}{2}} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-i \, c \tan \left (f x + e\right ) + c}}{\sqrt {2} \sqrt {c} + \sqrt {-i \, c \tan \left (f x + e\right ) + c}}\right )}{a^{2}} + \frac {32 i \, \sqrt {-i \, c \tan \left (f x + e\right ) + c} B c^{3}}{a^{2}} - \frac {4 \, {\left ({\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {3}{2}} {\left (5 \, A + 13 i \, B\right )} c^{4} - 2 \, \sqrt {-i \, c \tan \left (f x + e\right ) + c} {\left (3 \, A + 11 i \, B\right )} c^{5}\right )}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{2} a^{2} - 4 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )} a^{2} c + 4 \, a^{2} c^{2}}\right )}}{16 \, c f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="maxima")

[Out]

-1/16*I*(3*sqrt(2)*(A + 9*I*B)*c^(7/2)*log(-(sqrt(2)*sqrt(c) - sqrt(-I*c*tan(f*x + e) + c))/(sqrt(2)*sqrt(c) +
 sqrt(-I*c*tan(f*x + e) + c)))/a^2 + 32*I*sqrt(-I*c*tan(f*x + e) + c)*B*c^3/a^2 - 4*((-I*c*tan(f*x + e) + c)^(
3/2)*(5*A + 13*I*B)*c^4 - 2*sqrt(-I*c*tan(f*x + e) + c)*(3*A + 11*I*B)*c^5)/((-I*c*tan(f*x + e) + c)^2*a^2 - 4
*(-I*c*tan(f*x + e) + c)*a^2*c + 4*a^2*c^2))/(c*f)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 393 vs. \(2 (160) = 320\).
time = 3.74, size = 393, normalized size = 1.97 \begin {gather*} -\frac {{\left (3 \, \sqrt {\frac {1}{2}} a^{2} f \sqrt {-\frac {{\left (A^{2} + 18 i \, A B - 81 \, B^{2}\right )} c^{5}}{a^{4} f^{2}}} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (-\frac {3 \, {\left ({\left (-i \, A + 9 \, B\right )} c^{3} + \sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2} f\right )} \sqrt {-\frac {{\left (A^{2} + 18 i \, A B - 81 \, B^{2}\right )} c^{5}}{a^{4} f^{2}}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-i \, f x - i \, e\right )}}{2 \, a^{2} f}\right ) - 3 \, \sqrt {\frac {1}{2}} a^{2} f \sqrt {-\frac {{\left (A^{2} + 18 i \, A B - 81 \, B^{2}\right )} c^{5}}{a^{4} f^{2}}} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (-\frac {3 \, {\left ({\left (-i \, A + 9 \, B\right )} c^{3} - \sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2} f\right )} \sqrt {-\frac {{\left (A^{2} + 18 i \, A B - 81 \, B^{2}\right )} c^{5}}{a^{4} f^{2}}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-i \, f x - i \, e\right )}}{2 \, a^{2} f}\right ) + \sqrt {2} {\left (3 \, {\left (i \, A - 9 \, B\right )} c^{2} e^{\left (4 i \, f x + 4 i \, e\right )} - {\left (-i \, A + 9 \, B\right )} c^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + 2 \, {\left (-i \, A + B\right )} c^{2}\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-4 i \, f x - 4 i \, e\right )}}{8 \, a^{2} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="fricas")

[Out]

-1/8*(3*sqrt(1/2)*a^2*f*sqrt(-(A^2 + 18*I*A*B - 81*B^2)*c^5/(a^4*f^2))*e^(4*I*f*x + 4*I*e)*log(-3/2*((-I*A + 9
*B)*c^3 + sqrt(2)*sqrt(1/2)*(a^2*f*e^(2*I*f*x + 2*I*e) + a^2*f)*sqrt(-(A^2 + 18*I*A*B - 81*B^2)*c^5/(a^4*f^2))
*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-I*f*x - I*e)/(a^2*f)) - 3*sqrt(1/2)*a^2*f*sqrt(-(A^2 + 18*I*A*B - 81*B
^2)*c^5/(a^4*f^2))*e^(4*I*f*x + 4*I*e)*log(-3/2*((-I*A + 9*B)*c^3 - sqrt(2)*sqrt(1/2)*(a^2*f*e^(2*I*f*x + 2*I*
e) + a^2*f)*sqrt(-(A^2 + 18*I*A*B - 81*B^2)*c^5/(a^4*f^2))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-I*f*x - I*e)
/(a^2*f)) + sqrt(2)*(3*(I*A - 9*B)*c^2*e^(4*I*f*x + 4*I*e) - (-I*A + 9*B)*c^2*e^(2*I*f*x + 2*I*e) + 2*(-I*A +
B)*c^2)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-4*I*f*x - 4*I*e)/(a^2*f)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \frac {\int \frac {A c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c}}{\tan ^{2}{\left (e + f x \right )} - 2 i \tan {\left (e + f x \right )} - 1}\, dx + \int \left (- \frac {A c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{2}{\left (e + f x \right )}}{\tan ^{2}{\left (e + f x \right )} - 2 i \tan {\left (e + f x \right )} - 1}\right )\, dx + \int \frac {B c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )}}{\tan ^{2}{\left (e + f x \right )} - 2 i \tan {\left (e + f x \right )} - 1}\, dx + \int \left (- \frac {B c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{3}{\left (e + f x \right )}}{\tan ^{2}{\left (e + f x \right )} - 2 i \tan {\left (e + f x \right )} - 1}\right )\, dx + \int \left (- \frac {2 i A c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )}}{\tan ^{2}{\left (e + f x \right )} - 2 i \tan {\left (e + f x \right )} - 1}\right )\, dx + \int \left (- \frac {2 i B c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{2}{\left (e + f x \right )}}{\tan ^{2}{\left (e + f x \right )} - 2 i \tan {\left (e + f x \right )} - 1}\right )\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))**(5/2)/(a+I*a*tan(f*x+e))**2,x)

[Out]

-(Integral(A*c**2*sqrt(-I*c*tan(e + f*x) + c)/(tan(e + f*x)**2 - 2*I*tan(e + f*x) - 1), x) + Integral(-A*c**2*
sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**2/(tan(e + f*x)**2 - 2*I*tan(e + f*x) - 1), x) + Integral(B*c**2*sqr
t(-I*c*tan(e + f*x) + c)*tan(e + f*x)/(tan(e + f*x)**2 - 2*I*tan(e + f*x) - 1), x) + Integral(-B*c**2*sqrt(-I*
c*tan(e + f*x) + c)*tan(e + f*x)**3/(tan(e + f*x)**2 - 2*I*tan(e + f*x) - 1), x) + Integral(-2*I*A*c**2*sqrt(-
I*c*tan(e + f*x) + c)*tan(e + f*x)/(tan(e + f*x)**2 - 2*I*tan(e + f*x) - 1), x) + Integral(-2*I*B*c**2*sqrt(-I
*c*tan(e + f*x) + c)*tan(e + f*x)**2/(tan(e + f*x)**2 - 2*I*tan(e + f*x) - 1), x))/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((B*tan(f*x + e) + A)*(-I*c*tan(f*x + e) + c)^(5/2)/(I*a*tan(f*x + e) + a)^2, x)

________________________________________________________________________________________

Mupad [B]
time = 9.36, size = 294, normalized size = 1.48 \begin {gather*} \frac {\frac {11\,B\,c^4\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{2}-\frac {13\,B\,c^3\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{4}}{4\,a^2\,c^2\,f+a^2\,f\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^2-4\,a^2\,c\,f\,\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}-\frac {\frac {A\,c^4\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,3{}\mathrm {i}}{2\,a^2\,f}-\frac {A\,c^3\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}\,5{}\mathrm {i}}{4\,a^2\,f}}{{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^2-4\,c\,\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )+4\,c^2}+\frac {2\,B\,c^2\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{a^2\,f}+\frac {\sqrt {2}\,A\,{\left (-c\right )}^{5/2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-c}}\right )\,3{}\mathrm {i}}{8\,a^2\,f}-\frac {27\,\sqrt {2}\,B\,c^{5/2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {c}}\right )}{8\,a^2\,f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*tan(e + f*x))*(c - c*tan(e + f*x)*1i)^(5/2))/(a + a*tan(e + f*x)*1i)^2,x)

[Out]

((11*B*c^4*(c - c*tan(e + f*x)*1i)^(1/2))/2 - (13*B*c^3*(c - c*tan(e + f*x)*1i)^(3/2))/4)/(4*a^2*c^2*f + a^2*f
*(c - c*tan(e + f*x)*1i)^2 - 4*a^2*c*f*(c - c*tan(e + f*x)*1i)) - ((A*c^4*(c - c*tan(e + f*x)*1i)^(1/2)*3i)/(2
*a^2*f) - (A*c^3*(c - c*tan(e + f*x)*1i)^(3/2)*5i)/(4*a^2*f))/((c - c*tan(e + f*x)*1i)^2 - 4*c*(c - c*tan(e +
f*x)*1i) + 4*c^2) + (2*B*c^2*(c - c*tan(e + f*x)*1i)^(1/2))/(a^2*f) + (2^(1/2)*A*(-c)^(5/2)*atan((2^(1/2)*(c -
 c*tan(e + f*x)*1i)^(1/2))/(2*(-c)^(1/2)))*3i)/(8*a^2*f) - (27*2^(1/2)*B*c^(5/2)*atanh((2^(1/2)*(c - c*tan(e +
 f*x)*1i)^(1/2))/(2*c^(1/2))))/(8*a^2*f)

________________________________________________________________________________________